

产品特性

- 提供完整的保护机制
- 集成功率 MOSFET 等效阻抗为 35mΩ /RSS(ON)
- 过温保护
- 过充电流保护
- 过放电流保护
- 负载短路保护
- 高精度电压检测
- 低功耗电流
- -工作模式: 1.0µA
- -掉电模式: 0.01μA
- 有电池反接保护功能
- 提供 DFN1x1-4L & SOT23-3L 封装

产品应用

- 智能穿戴设备
- TWS 蓝牙耳机

产品描述

HCR2691系列为单节锂离子 (Li+) 电池设计的过充及过放电压和过大负载电流的保护 IC. 它还包括一个短路保护功能,以防止过大的外部短路电流。HCR2691由两个电压检测器、参考单元、延迟电路、短路保护器、逻辑电路和 MOSFET 开关组成。当充电电压超过检测器阈值 VDET1 电平时为过充,MOSFET 开关将关闭。检测到过充后,当 VBAT电压下降到 "VREL1"电平以下,或是断开充电器与电池组的连接,並且 VBAT电压下降至 "VREL1"电平以下时,即可复位,MOSFET 开关即导通。当放电电压低于检测器阈值 VDET2 电平时为过放,MOSFET 开关会在一个内部固定延迟时间后关闭。HCR2691系列检测到过放电压后,将充电器连接到电池组时,当电池供电电压高于过放检测阈值时,MOSFET开关即导通。

过载电流保护由内置的过流检测器侦测, 而侦测到 过载电流时透过内部固定延迟时间后,MOSFET开关 将关闭,切断过载电流。

一旦检测到过电流,就可以通过将电池组从负载系统中移除才可打开 MOSFET 开关来复位。此外,短路保护器在外部短路电流的作用下会立即关断 MOSFET 开关没有内部固定延迟时间。

SOT23-3L

图 1. HCR2691封装外观图

封装脚位图

图 2. HCR2691封装脚位图 (顶部)

封装引脚功能描述

DFN1x1-4L	SOT23-3L	Pin Name	引脚功能描述		
1	2	ВАТ	电源电压的输入。		
2, 3	3	vss	接地, 将电池的负极端子连接到引脚。PCB 布线时请将引脚与 EPAD 连接起来。		
4	1	EB-	系统端的负极。 内部 MOSFET 开关将此端子连接到 VSS。PCB 布线时请使用较宽的布线连接引脚。		
EPAD(5)	-	VSS	芯片基板。 悬空或连接到 VSS。 建议连接 VSS 为佳。		

典型应用电路

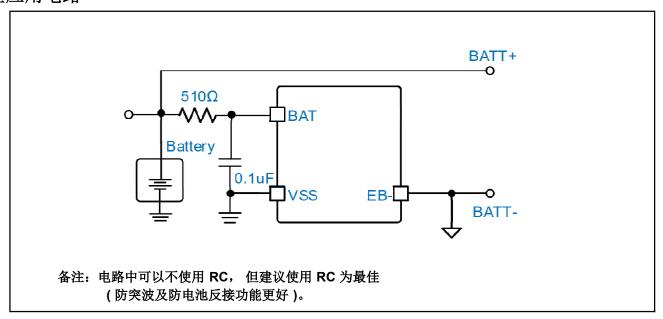


图 3. HCR2691典型应用原理图

产品规格书-V2 www.hcrsemi.com 页 2 / 9

产品功能方框图

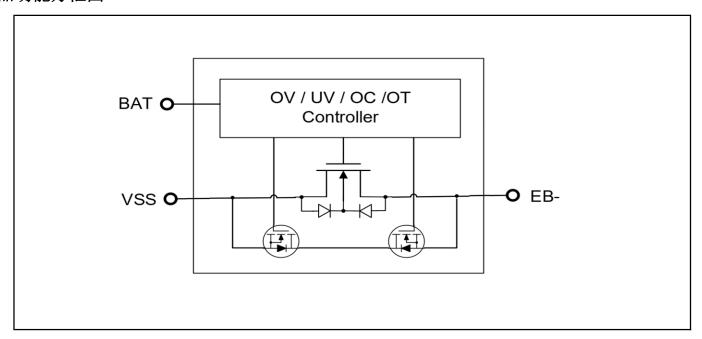
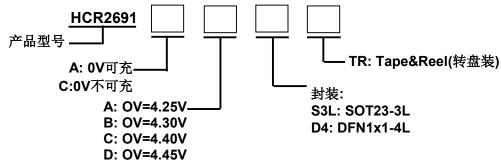



图 4. HCR2691功能方框图

产品订货信息

厂前り负行尽				
订货型号	丝印	温度范围	封装	每盘数量
HCR2691AAS3LTR	AAS3	-40'C to +85'C	SOT23-3L	3000个/盘
HCR2691ABS3LTR	ABS3	-40'C to +85'C	SOT23-3L	3000个/盘
HCR2691ACM3LTR	ACS3	-40'C to +85'C	SOT23-3L	3000个/盘
HCR2691ADM3LTR	ADS3	-40'C to +85'C	SOT23-3L	3000个/盘
HCR2691AAD4TR	AAD4	-40'C to +85'C	DFN1x1-4L	8000个/盘
HCR2691ABD4TR	ABD4	-40'C to +85'C	DFN1x1-4L	8000个/盘
HCR2691ACD4TR	ACD4	-40'C to +85'C	DFN1x1-4L	8000个/盘
HCR2691ADD4TR	ADD4	-40'C to +85'C	DFN1x1-4L	8000个/盘

最大耐压值 (Note 1)

参数项描述		符号	参数值	单位
输入电压范围从BAT到VSS		VBAT	-0.3 to +8	V
EB-脚电压范围从EB-到VSS		VEB-	-8 to +9	V
封装热阻 note2	DFN1x1-4L	θJΑ	195	'C/W
到表然阻	SOT23-3L	OJA	250	'C/W
结点温度		TJ	+150	'C
存储温度范围		Тѕтс	-65 to +150	'C
引脚焊锡温度 (Soldering, 10 sec.)		TLEAD	260	'C
ESD 静电		НВМ	2000	V
		ММ	200	V

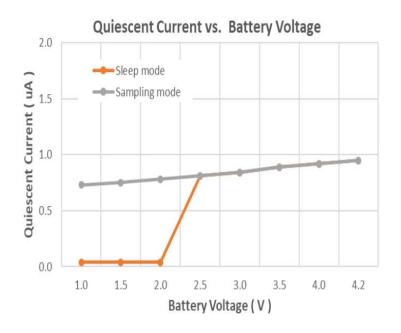
Note 1. 任何超过"最大耐压值"的应用可能会导致芯片遭受永久性损坏。 这些是额定最大耐压值, 仅 表示在这个范围内芯片不会损伤, 但不保证所有性指标都正常, 在任何超过"最大耐压值"的 场合使用, 都可能导致芯片永久性损坏。 在接近或等于最大耐压值情况下使用, 可能会影响 产品可靠性。

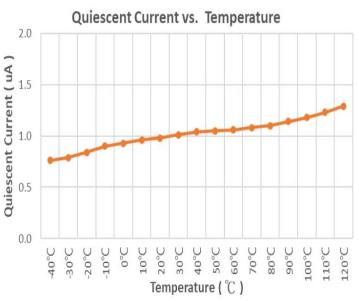
2. θJA 测量条件: TA = 25°C.

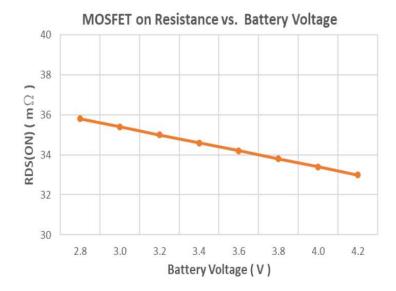
建议应用条件

参数项描述	符号	最小	最大	単位
输入电压BAT	VBAT	1.5	5.5	V
应用结温范围	TJ	-40	+125	'C
应用环境温度范围	Та	-40	+85	Ċ

产品规格书-V2 www.hcrsemi.com 页 4 / 9


电气特性


(VBAT =3.6V, TA=25°C 另有说明除外)


参数项描述	符号	测试条件	最小	典型	最大	单位	
检测电压							
		OV Type A	4.225	4.25	4.275		
过充电保护电压	VDET1	OV Type B & E	4.275	4.30	4.325	v	
及元电体扩电压	VDEIT	OV Type C	4.375	4.40	4.425		
		OV Type D	4.425	4.45	4.475		
		OV Type A	4.025	4.05	4.075		
过充电解除电压	VREL1	OV Type B & E	4.075	4.10	4.125	V	
过 几七件你 七压	T T T T T T T T T T T T T T T T T T T	OV Type C	4.175	4.20	4.225	•	
		OV Type D	4.225	4.25	4.275		
过放电保护电压	VDET2	UV Type A & B	2.475	2.5	2.525	V	
	V DE12	UV Type C & D & E	2.775	2.8	2.825	v	
过放电解除电压	VREL2	UV Type A & B	2.675	2.7	2.725	V	
	11122	UV Type C & D & E	2.975	3.0	3.025		
检测电流							
过放电电流保护	lodd	VBAT=3.6V	0.2	0.4	0.6	Α	
过充电电流保护	locd	VBAT=3.6V	0.15	0.35	0.55		
负载短路电流保护	ISHORT	VBAT=3.6V	0.8	1.0	1.2	Α	
正常工作电流	ЮР	VBAT=3.6V, VEB- =0V	-	1.0	2.0	uA	
休眠待机电流	IDN	VBAT=2.0V, VEB- =Floating	-	0.01	0.1	uA	
内部功率MOSFET阻抗(Vss to Veb-)						
功率MOSFET阻抗	RDS(ON)	VBAT=3.6V, IEB- =0.1A	-	35	49	mΩ	
过温保护			•				
过温保护检测	TSD	-	-	125	-	'C	
解除过温保护	TSDR	-	-	105	-	'C	
延迟时间							
过充电保护延时	tVDET1	-	140	180	220	mS	
过放电保护延时	tVDET2	-	35	45	55	mS	
过放电流保护延时	tlodd	-	8	10	12	mS	
过充电流保护延时	tlocp	-	8	10	12	mS	

典型电气特性:

产品规格书-V2 www.hcrsemi.com 页 6 / 9

应用指导:

过充电检测(VOCD)

VOCD 由 VBAT 引脚监控电压。当 VBAT 电压从低值 超过 VOCD 的 VDET1 阈值时, VOCD 检测并关闭 MOSFET 开关。

检测到过充后, 有两种情况释放 VOCD。

第一. 是当充电器仍在连接中,而 VBAT 电压下降至 低于 "VREL1"的电平时。

第二. 种情况是当充电器与电池组断开连接且 VBAT 连接到负载时, 放电电流可以通过内部寄生二极 管给电池放电, 而当 VBAT 电平放电到 "VDET1" 以下时, Vocd 可以复位并再次打开MOSFET 开关。

过放电检测 (VODD)

VODD 由 VBAT引脚监控电压。当 VBAT 电压低于过放电检测阈值 VDET2 时,VODD 可以检测到过放电,内部 MOSFET 开关将被关闭。

在过放保护期间,为了释放 VODD,充电器必须连接到电池组。 当VBAT电压保持在过放电检测阈值 VDET2 以下时,充电电流可以流过内部放电控制 MOSFET的寄生二极管给电池充电,使 VBAT 电压上升到大于VREL2 电平值时,MOSFET再次导通。过放检测的保护延迟时间为 tVDET2 = 45ms(典型值)。 VBAT 电压必须持续低于 VDET2 的时间超过 tVDET2 才能使 VODD 发出信号以关闭放电控制的 MOSFET。

通过 VODD 检测到过放后,电源电流会下降至0.01μA,进入休眠状态,但只有休眠模式才有此功能。

过电流检测 & 短路保护(VEOC)

当内部MOSFET开关导通时,持续监控过流和短路保护检测。当导通电流上升到过流保护电流电平时,过流检测器开始工作,内部MOSFET开关将被关断。内部过流检测器的动作延迟时间是内部固定的,典型值为10ms。

而短路保护被触发后,内部 MOSFET开关将在较短的延迟时间(通常为 270μs)后关闭。

过电流检测 & 短路保护(VEOC)(con.)

在检测到过流或短路保护后,需要关断负载来消除过流或外部短路的原因后,可使内部MOSFET开关自动导通。自动导通侦测由过流检测器在EB-和VSS引脚之间内置一个典型值为 67KΩ 的下拉电阻作为侦测来源。

充电电流异常检测

如果充电电流保持大于过充电电流检测的阈值,并且时间超过过充电检测延迟时间,HCR2691将关闭控制MOSFET 并停止充电。 该动作称为异常充电电流检测。 在检测到异常充电电流后, 须移除充电器才能再次打开控制 MOSFET。

热散功率

持续工作时,IC 的结点温度不应超过其额定值。最大的热散功率取决于 IC 封装的热阻,PCB 布图,周围气流速率以及结点和环境温度的差异。

最大热散功率计算如下:

环温 TA=25°C, 使用 HCRSEMI PCB,

DFN1x1-4L 封装:

 $PD(Max) = (125^{\circ}C - 25^{\circ}C) / (195^{\circ}C/W) = 0.51W$

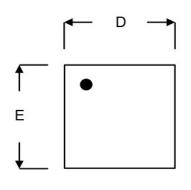
SOT23-3L 封装:

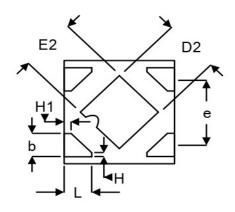
PD (Max) = $(125^{\circ}C - 25^{\circ}C) / (250^{\circ}C/W) = 0.4W$

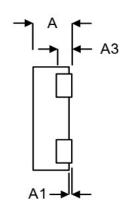
热散功率(PD)等于输出电流和 LDO 上的压降的乘积, 计算公式如下:

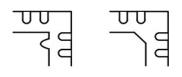
 $PD = IOUT2 \times RS(ON)$

Layout 注意事项:


将输入电容和HCR2691 放置在 PCB 的同一面,并尽量将电容器靠近 IC 的输入输出脚摆放, 可实现电路最佳性能输入电容的接地连接必须拉回到HCR2691的接地引脚, 并使用短而粗的铺线连接。

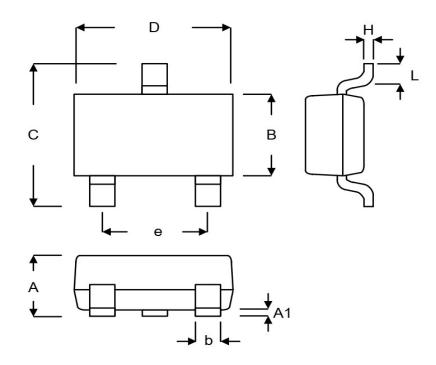



封装信息:


封装: DFN1x1-4L (D4)

DETAILAPIN #1 ID and Tie Bar Mark Options

Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.


Symbol	Millim	eters	Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.300	0.400	0.012	0.016	
A1	0.000	0.050	0.000	0.002	
А3	0.117	0.162	0.005	0.006	
b	0.175	0.280	0.007	0.011	
D	0.900	1.100	0.035	0.043	
D2	0.430	0.550	0.017	0.022	
Е	0.900	1.100	0.035	0.043	
E2	0.430	0.550	0.017	0.022	
е	0.650		0.026		
L	0.200	0.300	0.008	0.012	
Н	0.039		0.002		
H1	0.064		0.003		

封装信息(延续):

封装: SOT23-3L (S3L)

单位: mm

Symbol	Millim	neters	Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
В	1.200	1.400	0.047	0.055	
b	0.300	0.500	0.012	0.020	
С	2.250	2.550	0.089	0.100	
D	2.800	3.000	0.110	0.118	
е	1.900		0.0	75	
Н	0.080	0.150	0.003	0.006	
L	0.300	0.500	0.012	0.020	