

650V GaN Power Transistor (FET)

Features

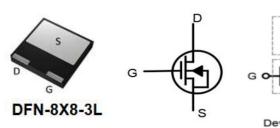
- * VDSS=650V, ID=9A
- * Easy to use, compatible with standard gate drivers
- * Excellent Qg X RDS(on) figure of merit (FOM)
- * Low Qrr, No free-wheeling diode required
- * Low Switching Loss
- * Lead Free Available(RoHS Compliant)
- * DFN-8X8-3L Packages

Applications

- * High Efficiency Power Supplies
- * High Efficiency USB PD Adapters
- * Other Consumer Electronics

Package Marking And Ordering Information

Device	Marking	Device Package	Quantity
SWGN9N65DN3L/TR	GN9N65DN3	DFN-8X8-3L	2500pcs, Tape&Reel


ABSOLUTE MAXIMUM RATINGS (Tj = 25'C UNLESS OTHERWISE NOTED)				
Parameter		Symbol	SWGN9N65DN	Unit
Drain to Source Voltage (TJ=-55'C to 150'	C)	VDSS	650	v
Gate to Source Voltage		Vgss	±20	v
Continuous Durin Courset	Tc=25'C		9	Α
Coutinuous Drain Current	Tc=100'C	- ID -	6	Α
Pulsed Drain Current (nulse width 400c)	Tc=25'C	Inu	31	
Pulsed Drain Current (pulse width:10us)	Tc=150'C	- IDM -	23	- A
Maximum Power Dissipation	Tc=25'C	PD	38	w
Operating Junction and Storage Tempera	TJ, Tstg	-55 to 150	'C	
Soldering Peak Temperature	TCSOLD	260	'C	
Thermal Resistance, Junction-to-Case(Maximum)		RQJC	3.3	'C/W
Thermal Resistance, Junction-to-Ambient	t(Maximum) ^{note2}	Rqja	50	'C/W

Note 1. Device on one layer epoxy PCB for drain connection(vertical and without air stream cooling

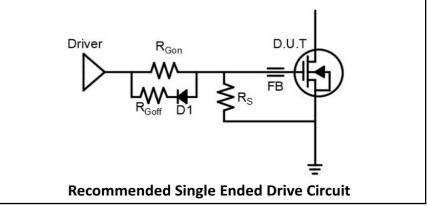
with 6cm2 copper area and 70um thickness)

Product Summary VDSS	650	V
RDS(on), Typ.	240	mΩ
QG, Typ.	21.5	nC
QRR, Typ.	39	nC

Pin Description and Schematic

Star-wing

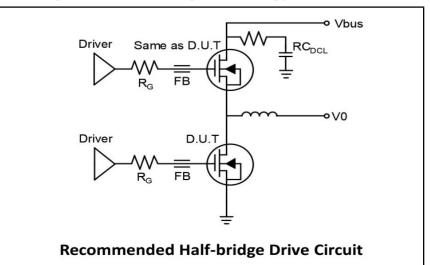
R


SWGN9N65DN

Parameter	Symbol	Test Conditions	SWGN9N65DN		Unit	
Faiailletei	Symbol			Тур	Max	Unit
Forward Device Characteristics						
Drain -Source Breakdown Voltage	VDSS-MAX	Vgs=0V,	650	-	-	V
Zero Gate Voltage Drain Current	IDSS	Vds=700V, Vgs=0V, TJ=25'C	-	8	20	uA
Zero Gate Voltage Drain Current	IDSS	VDs=700V, VGs=0V, TJ=100'C	-	50	-	UA
Gate-Body Leakage Current	lgss	Vds=0V, Vgs= ±20V	-	-	±150	nA
Gate-Threshold Voltage	VGS(th)	Vgs = Vds, Id= 500uA	1.2	1.6	2.0	V
Drain-Source-On-Resistance note4	B DS(an)	Vgs=8V, Ids=4A, Tj=25'C	190	240	290	mΩ
Drain-Source-On-Resistance	RDS(on)	Vgs=8V, Ids=4A, Tj=150'C	-	500	-	mΩ
Dynamic Characteristics						
Input Capacitance	Ciss		-	500	-	
Output Capacitance	Coss	Vos= 650V, Vos= 0V F=1MHz	-	18	-	рF
Reverse Transfer Capacitance	Crss		-	2	-	
Output Capacitance(er)	CO(er)	VDS= 0-650V, VGS= 0V	-	25	-	рF
Output Capacitance(tr)	CO(tr)	VD3- 0-030V, VG3- 0V	-	45	-	рг
Turn-On Delay Time	td(ON)		-	20	-	ns
Rise Time	tr	VDS=400V,IDS=3A,	-	7	-	ns
Turn-Off Delay Time	td(OFF)	Vgs=0-12V, Rg=30Ω	-	80	-	ns
Fall Time	tf		-	6	-	ns
Gate Charge Characteristics						
Total Gate Charge	Qg		-	21.5	-	
Gate-Source Charge	Qgs	Vps= 400V, Vgs= 0-12V lps=5.5A	-	3.0	-	nC
Gate-Drain Charge	Qgd		-	3.5	-	
Reverse Diode Characteristics						
		Vgs=0V, Ids=2A, TJ=25'C	-	1.2	-	V
Diodes Forward Voltage note4	Vsd	Vgs=0V, Ids=5A, TJ=25'C	-	1.7	-	V
		Vgs=0V, Ids=5A, TJ=150'C	-	2.0	-	V
Reverse Recovery Time	trr	Is=3A, Vgs=0V, Vdd=400V,	-	12	-	nS
Reverse Recovery Charge	Qrr	di/dt=1000A/us(Note3)		39	-	uC

Note 4. Dynamic on-resistance;

Circuit Implementation


Mostly used in flyback, forward and push-pull converters

Recommended gate drive: (0V, 12V) with Rgon=300 - 500 Ω , Rgoff=10 Ω

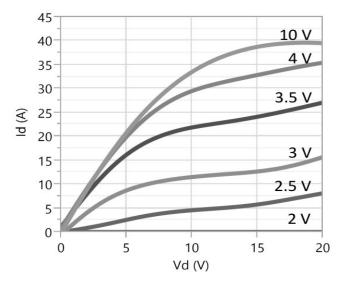
Gate Ferrite Bead	Gate Resistance	Gate Resistance	Gate Source Resistance	Gate Diode
(FB)	(RGon)	(RGoff)	(Rs)	(D1)
300-600Ω@100MHz	300-500Ω	10Ω	10ΚΩ	1N4148

Mostly used in half bridge and full bridge topology

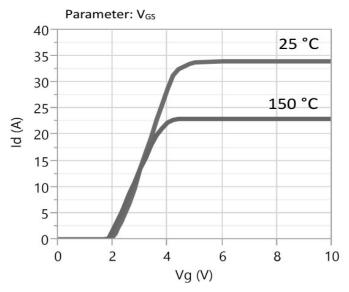
Recommended gate drive: (0V, 12V) with Rg=30 - 70Ω

Gate Ferrite Bead	Gate Resistance	DC Link RC Snubber
(FB)	(Rg)	(RCDCL)
300Ω@100MHz	30 - 70Ω	4nF + 2Ω

Notes:


a. RCDCL should be placed as close as possible to the srain pin.

b. The layout and wiring of the drive circuit should be as short as possible.


Star-wing

R

Typical Characteristics (TJ = 25'C unless otherwise noted)

Figure 1: Typical Output Characteristics

Figure 3: Typical Transfer Characteristics

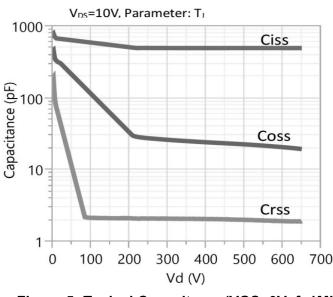


Figure 5: Typical Capacitance(VGS=0V, f=1MHz)

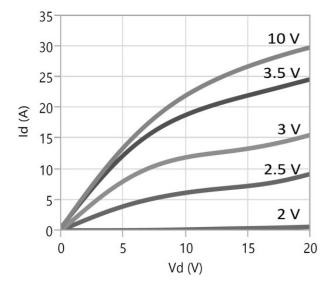


Figure 2: Typical Output Characteristics TJ=150'C

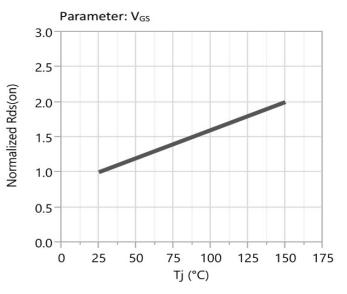


Figure 4: Normalized On-resistance

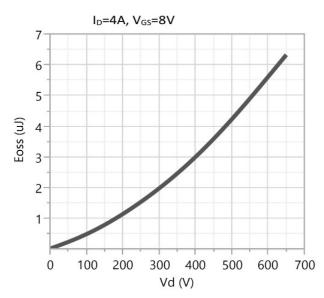
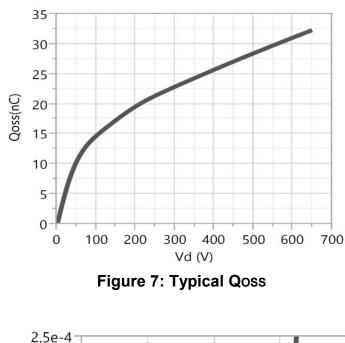



Figure 6: Typical Coss Stored Energy

Star-wing [®]

Typical Characteristics (TJ = 25'C unless otherwise noted)(Con.)

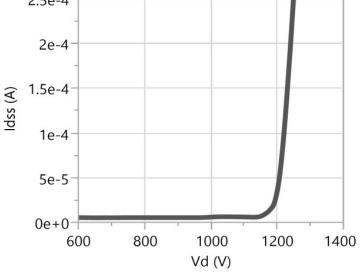
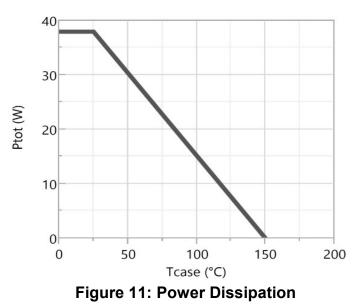



Figure 9: Drain-Source Breakdown Voltage

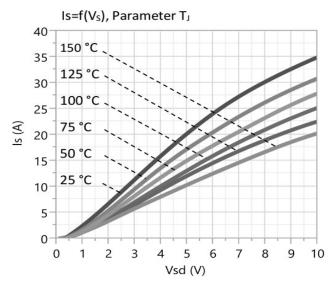


Figure 8: Forward Characteristic of Rev. Diode

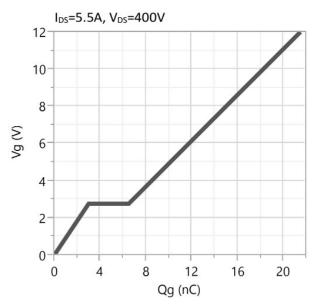
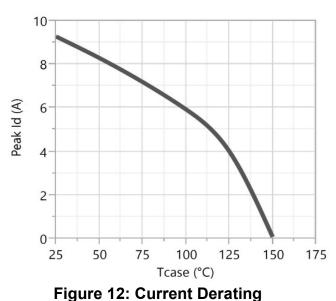
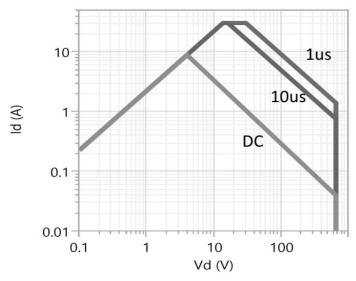




Figure 10: Typical Gate Charge

Typical Characteristics (TJ = 25'C unless otherwise noted)(Con.)

R

Star-wing

Figure 13: Safe Operating Area Tc=25'C

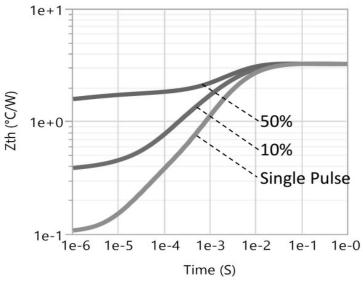
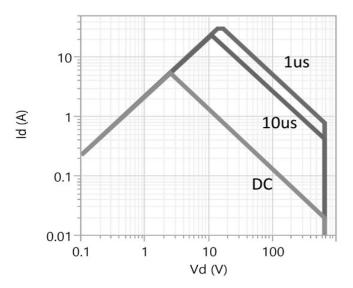
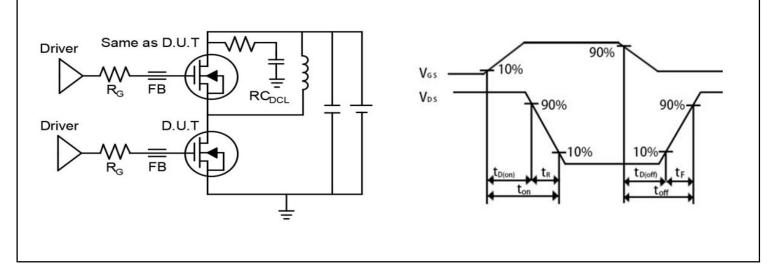
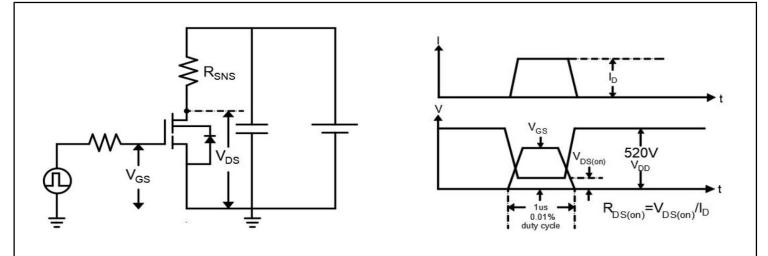
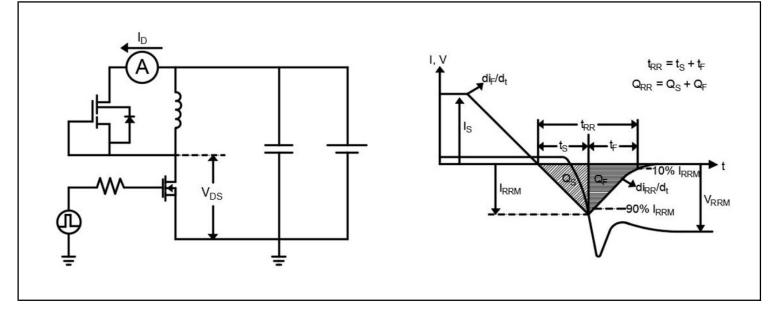


Figure 15: Transient Thermal Resistance


Figure 14: Safe Operating Area Tc=80'C

Test Circuit and Waveforms


Switching Time Test Circuit and Waveform

Dynamic RDS(on) Test Circuit and Waveform

Diode Characteristic Test Circuits and Waveform

SWGN9N65DN

Star-wing

Design Guidelines

(R)

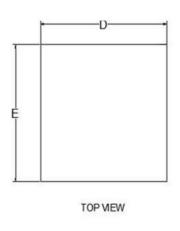
Fast switching GaN device can reduce power conversion losses, and thus enable high frequency

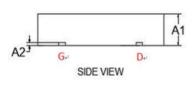
operations. Certain PCB design rules and instructions, however, need to be followed to take full advantages of fast switching GaN devices.

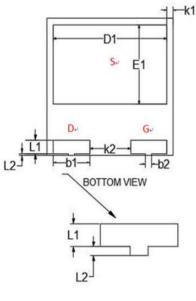
Before evaluating Star-wing's GaN devices, please refer to the table below which provides some

practical rules that should be followed during the evaluation.

When Evaluating Star-wing's GaN Devices:

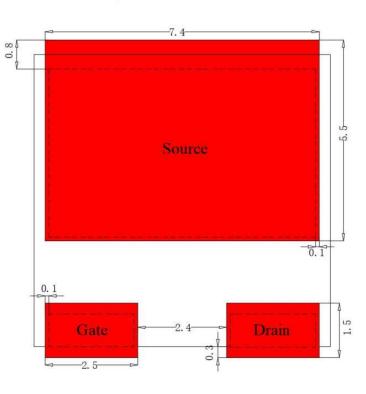

DO	DO NOT
Make sure the traces are as short as possible for both drive and power loops to minimize parasitic inductance	Using Star-wing devices in GDS board layouts
Use the test tool with the shortest inductive loop, and make sure test points should be placed close enough	Use differential mode probe or probe ground clip with long wires
Minimize the lead length of DFN-8X8-3L packages when installing them to PCB	Use long traces in drive circuit, or long lead length of the devices

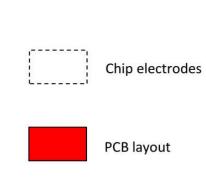

Packaging Information


R

PKG: DFN-8X8-3L Package

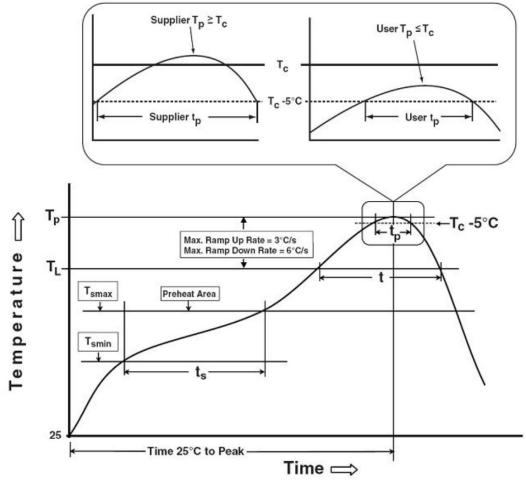
unit : mm





Complete	Dimensions in Millimete		
Symbol	MIN	NOM	MAX
A1	1.750	1.850	1.950
A2	0.185	0.203	0.230
D	7.000	8.000	9.000
E	7.950	8.000	8.050
D1	7.050	7.200	7.350
E1	4.450	4.600	4.750
K1	0.375	0.400	0.425
K2	2.575	2.600	2.625
b1	2.250	2.300	2.350
b2	0.375	0.400	0.425
L1	0.700	0.800	0.900
L2	0.075	0.100	0.125

Recommended PCB Layout



Dimensions are shown in millimeters

Classification Profile

R

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly		
Preheat & Soak	100 ℃	150 ℃		
Temperature min (T _{smin})	150 ℃	200 °C		
Temperature max (T _{smax})	60-120 seconds	60-120 seconds		
Time (Tsmin to Tsmax) (t_s)				
Average ramp-up rate	3 ℃/second max.	2°C/cocord max		
(T₅maxto T₽)	5 C/second max.	3℃/second max.		
Liquidous temperature (TL)	183 °C	217 °C		
Time at liquidous (tւ)	60-150 seconds	60-150 seconds		
Peak package body Temperature	See Classification Temp in table 1	SeeClassification Tempin table 2		
(T _₽)*	See Classification Temp in table 1	SeeClassification Tempin table 2		
Time (t _P)** within 5° C of the specified	20** cocordo	20** cocordo		
classification temperature (T _c)	20** seconds	30** seconds		
Average ramp-down rate (T_P to T_{smax})	6 ℃/second max.	6 ℃/second max.		
Time 25 $^{\circ}$ C to peak temperature	Time 25°C to peak temperature 6 minutes max. 8 minutes max.			
*Tolerance for peak profile Temperature	*Tolerance for peak profile Temperature (T _p) is defined as a supplier minimum and a user maximum.			
** Tolerance for time at peak profile temperature (t _p) is defined as a supplier minimum and a user maximum.				

R

SWGN9N65DN

Table 1.SnPb Eutectic Process – Classification Temperatures (Tc)

Package	Volume mm ³	Volume mm³
Thickness	<350	≥350
<2.5 mm	235 °C	220 ℃
≥2.5 mm	220 °C	220 °C

Table 2.Pb-free Process – Classification Temperatures (Tc)

Package	Volume mm ³	Volume mm ³	Volume mm ³
Thickness	<350	350-2000	≥2000
<1.6 mm	260 ℃	260 ℃	260 ℃
1.6 mm – 2.5 mm	260 ℃	250 ℃	245 ℃
≥2.5 mm	250 ℃	245 ℃	245 ℃

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
PRECON	JESD-22, A113	30°C/60%/192Hrs
HTRB	JESD-22, A108	168/500/1000 Hrs, Bias @ 150°C
HTGB	JESD-22, A108	168 /500/1000Hrs, Vgs100% @ 150°C
PCT	JESD-22, A102	96 Hrs, 100%RH, 2atm, 121°C
ТСТ	JESD-22, A104	500 Cycles, -55°C~150°C