

Features

Wide Supply Voltage Range
 Single Supply: 3.3V to 32V
 Dual Supplies: ±1.65V to ±16V

• Low Supply Current Drain:55uA

Low Input Bias Current: 25nA (Typical)

• Low Input Offset Current: ±5.0nA (Typical)

• Low Input Offset Voltage: 1.0mV (Typical)

 Input Common Mode Voltage Range Includes Ground

 Differential Input Voltage Range Equals to the Power Supply Voltage

- Low Output Saturation Voltage
- Open-Drain Output for Maximum Flexibility

Applications

- Hysteresis Comparators
- Factory Automation & Control
- Industrial Equipment
- Test and Measurement
- Cordless Power Tool &Vacuum Robot
- Wireless Infrastructure

General Description

The LM2903 is the dual comparator version, and the outputs can be connected to other open-collector outputs to achieve wired-AND relationships. It can operate from 3.3V to 32V, and have low power consuming 55µA (TYP) per channel.

The LM2903 consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Quiescent current is independent of the supply voltage. The device is the most cost-effective solutions for applications where low offset voltage, high supply voltage capability low supply current, and space saving are the primary specifications in circuit design for portable consumer products.

The LM2903 is available in Green SOIC-8(SOP-8) and MSOP8 packages. It operates over an ambient temperature range of -40°C to +125°C

MSOP-8

SOIC-8(SOP-8)

Figure 1. Package Type of LM2903

Pin Configuration

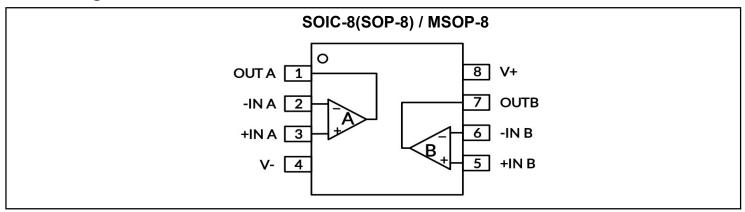


Figure 2. Pin Configuration of LM2903 (Top View)

Pin Function Table

SOIC-8 (SOP-8)	MSOP-8	Name	I/O (1)	Function Description
1	1	OUTA	0	Output, Channel A
2	2	-INA	I	Inverting input, channel A
3	3	+INA	I	Noninverting input, channel A
4	4	V-	Р	Negative (lowest) Power Supply
5	5	+INB	I	Noninverting input, channel B
6	6	-INB	ı	Inverting input, channel B
7	7	OUTB	0	Output, Channel B
8	8	V+	Р	Positive (highest) Power Supply

Note (1) I=Input, O=Output, P=Power.

Ordering Information

Ordering Code

Part Number	Marking ID note a	Temperature Range	Package	Package Type
LM2903DR8TR	LM2903XX	-40'C to +125'C	SOIC-8 (SOP-8)	Tape&Reel, 4000
LM2903DM8TR	LM2903XX	-40'C to +125'C	MSOP-8	Tape&Reel, 4000

note a. marking information: XX, the 1ST X is date code-Year(A=2010, B=2011,...)

the 2nd X is date code-month(A=Jan, B=Feb,...L=Dec). for example: S5BBA (2011,January)

Absolute Maximum Ratings Note 1

Parameter		Symbol	Min.	Max.	Unit
Supply Voltage, Vs=(V+) - (V-)		Vcc	-	36	
Input Pin Voltage(IN+, IN-)		Vin	(V-) - 0.3	(V+) + 0.3	v
Signal Output Pin Voltage	Vout	(V-) - 0.3 (V+) + 0.3			
Signal input pin Current (IN+,	lık	-10	10	mA	
Signal Output pin Current	lout	-55	55	mA	
Output Short-Circuit to Groun	ILIM	Conti	-		
Power Dissipation	SOIC-8 (SOP-8)	PD	660		mW
@TA=+25'C	MSOP-8		450		
Package thermal impedance	SOIC-8 (SOP-8)	θJA	1.	'C/W	
	MSOP-8		170		
Storage Temperature Range	•	Тѕтс	-65	+150	'C
Operating Junction Temperat	TJ	-40	+150	'C	
Lead Temperature (Soldering,	TLEAD	+260		'C	
ESD Class(Human Body Mode	НМВ	2000		V	
ESD Class(Machine Model)		ММ	200		\

Note 1: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Parameter	Symbol	Min	Max	Unit	
Supply Voltage,	Single-supply	Vcc	3.3	32	V
Vs=(V+) - (V-)	Dual-supply	Vcc	±1.65	±16	V
Operating Temperature Range		TA	-40	+125	'C

Electrical Characteristics:

(At TA = +25 C, VCM=(Vs/2), VS=5V, unless otherwise noted.) (1)

Parameter		Symbol	Conditions	Min ⁽²⁾	Type ⁽³⁾	Max ⁽²⁾	Unit	
Operating Voltage R	ange	Vs	-	3.3	-	32	٧	
			Vs=5V to 32V	-3.5	±0.8	3.5		
Input Offset Voltage		Vos	Vs=5V to 32V, TA= -40'C to +125'C	-	-	7	mV	
			Vs=5V, no load	-	110	180		
Quiescent Current		IQ	Vs=32V, no load, Ta= -40'C to +125'C	-	150	-	uA	
	(5)		TA=25'C	-	10	50		
Input Bias Current ⁽⁴⁾⁽	(3)	lв	Ta= -40'C to +125'C	-	-	100	рA	
	(4)		TA=25'C	-	10	50	_	
Input Offset Current	(=)	los	Ta= -40'C to +125'C	-	-	100	рA	
			Vs=3.3V to 32V	(V-)	-	(V+)-1.5		
Common-Mode Voltage Range		Vсм	Vs=3.3V to 32V, TA= -40'C to +125'C	(V-)	-	(V+)-2.0	V	
Large signal differential Voltage amplification		AVD	Vs=15V, Vo=1.4V to 11.4V, RL>=15K to (V+)	50	200	-	V/mV	
Low-level output vol	tage	Vol	Isink<=4mA, VID= -1V	-	200	300	mV	
Output Current (Sink	ς)	loL	Vo=1.5V; VID=-1V; Vs=5V	6.0	23	-	mA	
High-Level Output L	eakage	louuko	(V+)=V0=5V; VID=1V	-	80	400	nA	
Current	_	IOH-LKG	(V+)=Vo=32V; VID=1V	-	100	500	nA	
Switching Character	istics							
	Vs=5V		RPU=5.1KΩ, Overdrive =10mV	-	2.5	-		
Propagation Delay	V3-3V	-	RPU=5.1KΩ, Overdrive =100mV	-	0.5	-		
H To L ⁽⁶⁾	Vs=32V	TPHL	RPU=5.1KΩ, Overdrive =10mV	-	- 1.8 -		us	
	V5=32V		RPU=5.1KΩ, Overdrive =100mV	- 0.7 -		-		
	\/o_F\/		RPU=5.1KΩ, Overdrive =10mV	-	4.1	-		
Propagation Delay L To H ⁽⁶⁾	Vs=5V		RPU=5.1KΩ, Overdrive =100mV	-	1.6	-	us	
		TPLH	RPU=5.1KΩ, Overdrive =10mV	-	3.1	-		
	Vs=32V	:32V	RPU=5.1KΩ, Overdrive =100mV	-	1.4	-		

note (1). Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.

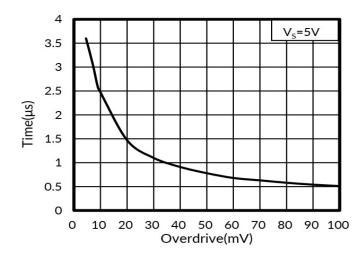
- (4). This parameter is ensured by design and/or characterization and is not tested in production.
- (5). Positive current corresponds to current flowing into the device.
- (6). High-to-low and low-to-high refers to the transition at the input.

^{(2).} Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

^{(3).} Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

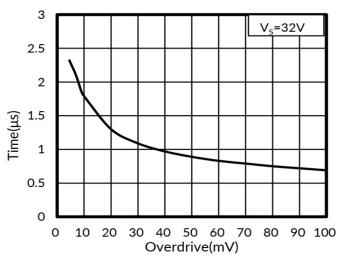
 $V_S = 5V$

General-Purpose High-Voltage Open-Drain Output Dual Comparator

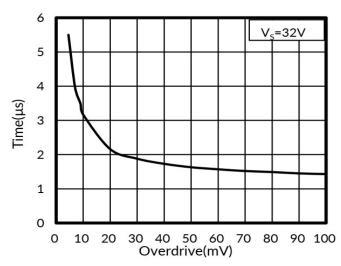

10

9

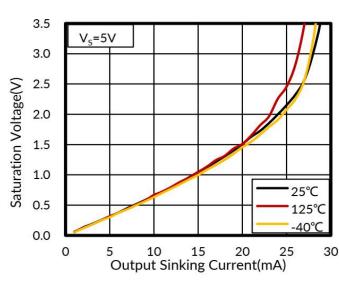
8

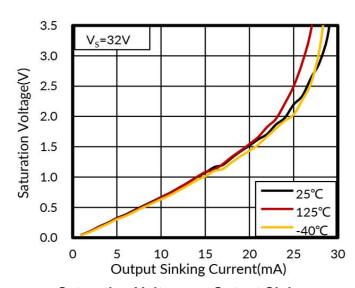

7

Performance Characteristics (Unless Otherwise Specified.)



(ST) 6 3 2 1 0 0 10 20 30 40 50 60 70 80 90 100 Overdrive(mV)


Response Time vs Input Overdrives
Negative Transition


Response Time vs Input Overdrives
Positive Transition

Response Time vs Input Overdrives Negative Transition

Response Time vs Input Overdrives
Positive Transition

Saturation Voltage vs Output Sink Current

Saturation Voltage vs Output Sink
Current

Detailed Description

Overview

The LM2903 family of comparators can operate up to 32V on the supply pin. This standard device has proven ubiquity and versatility across a wide range of applications. This is due to its low power and

high speed. The open-drain output allows the user to configure the output's logic low voltage (VOL) and can be utilized to enable the comparator to be used in AND functionality.

Figure 3. Functional Block Diagram

Application Information

The LM2903 is typically used to compare a single signal to a reference or two signals against each other. Many users take advantage of the open drain output (logic high with pull-up) to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes this comparator optimal for level shifting to a higher or lower voltage.

Detailed Design Procedure

When using the device in a general comparator application, determine the following:

- Input Voltage Range
- Minimum Overdrive Voltage
- Output and Drive Current
- Response Time

Typical Application

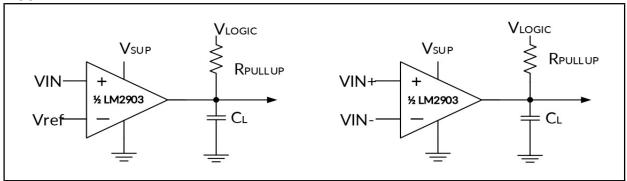


Figure 4. Single-Ended and Differential Comparator Configurations

Application Information

Application Information

When choosing the input voltage range, the input common mode voltage range(VICR)must be taken in to account. If temperature operation is below 25°C the VICR can range from 0 V to VCC – 2.0 V.

This limits the input voltage range to as high as VCC – 2.0 V and as low as 0 V. Operation outside of this range can yield incorrect comparisons.

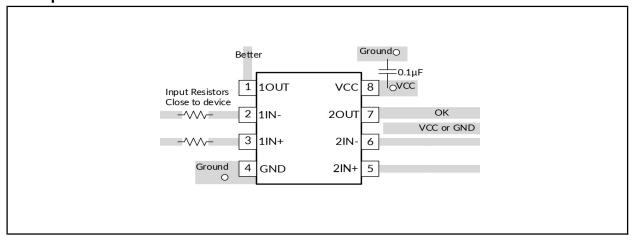
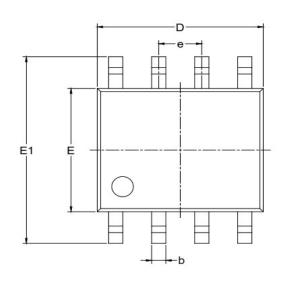
Layout

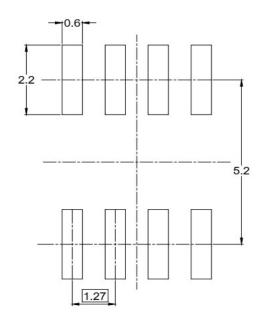
Layout Guidelines

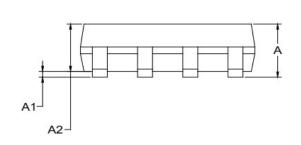
For accurate comparator applications without hysteresis, it is important maintain a stable power supply with minimized noise and glitches. To achieve this, it is best to add a bypass capacitor between the supply voltage and ground. This should be implemented on the positive power supply and negative supply (if available). If a negative supply is not being used, do not put a

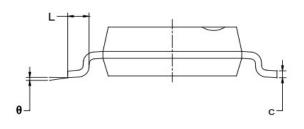
capacitor between the IC's GND pin and system ground. Minimize coupling between outputs and inverting inputs to prevent output oscillations. Do not run output and inverting input traces in parallel unless there is a VCC or GND trace between output and inverting input traces to reduce coupling. When series resistance is added to inputs, place resistor close to the device.

Layout Example

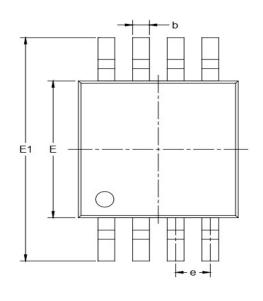

Figure 5. LM2903 Layout Example

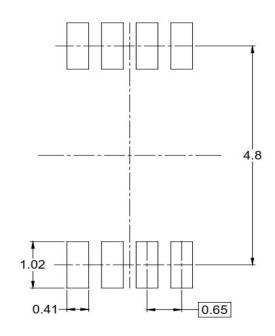


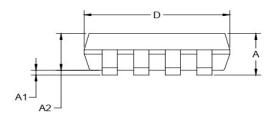

Mechanical Dimensions

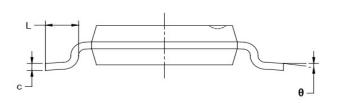
DR8 : SOIC-8/SOP-8 Unit: mm (inch)

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	


NOTES:

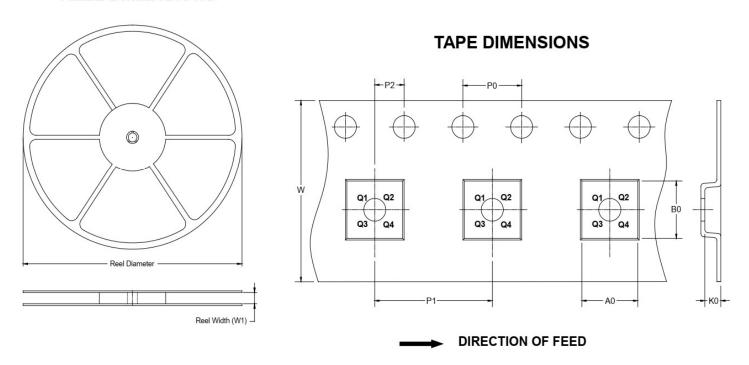

- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.




Mechanical Dimensions(Con.)

DM8 : MSOP-8 Unit: mm (inch)

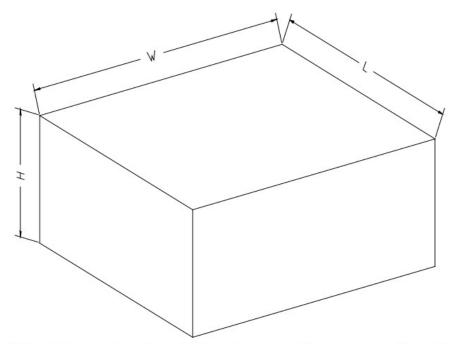
Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650 BSC		0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	


NOTES:

- 1. Body dimensions do not include mode flash or protrusion.
- 2. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1	A0	В0	K0	P0	P1	P2	w	Pin1
. achago Typo		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Quadrant
SOIC-8	13"	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13"	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

200	Reel Type	Length (mm)			Pizza/Carton	
	13"	386	280	370	5	